CS 30 Discussion 1A
2020.10.30

Samueli
UCLA Computer Science

Welcome back to CS30 Discussion!

e HW3 has been posted, dues Thursday, November 5, at
11:30pm.
e Mid-term Grading.

Sorting algorithm

Algorithm

Sorting algorithm

A sorting algorithm will put items in a list into an order, such as alphabetical or
numerical order. You can decide either increasing or decreasing order.

For example, a list of customer names could be sorted into alphabetical order by
surname, or a list of people could be put into numerical order by age.

Sorting algorithm

Sorting a list of items can take a long time, especially if it is a large list.

A computer program can be created to do this, making sorting a list of data much
easier.

e.g. some_sorting_algorithm([4, 3, 5, 2, 1)) = [1, 2, 3, 4, 5]

some_sorting_algorithm?

1. Selection Sort

Steps:

4 3 1 5| 2 Idea: Find the smallest item in
the list and place it in the front.

Recursive Thinking:

1 2 3 5 4 Find Minimum of the list: 1
Remove the minimum from the list: [4, 3, 5, 2]
L([2]]13]|4][53 Sort the removed list: [2, 3, 4, 5]

Append minimum to the head of the list: [1, 2, 3, 4, 5]

Implementation

def selectionSort(lst):
1f len(lst) <= 1:
return 1lst
else:
minimum = minlist(lst)
removed = removeSmallest (lst)

return [minimum] + selectionSort (removed)

def selectionSort(l) :
if len(l) <= 1:

return 1

Implementation

minimum = minlist (1)
removed = removeSmallest (1)

call selectionSort([1l, 5, 2])
inputl 1s [1, 5, 2]

minimum : 1

removed : [5, 2]

call selectionSort (removed) : ?

return [minimum] + selectionSort (removed)

input?2 1is [5, 2]
minimum : 2
removed : [5]
selectionSort (removed) : [5] (base case)
return [2] + [5] -> [2, 5]

return [1] + [2, 5] -> [1, 2, 5]

Implementation

Step 1: To find the minimum in a list.

def minlist (1)
if len(l) ==
return 1[0
else:
head =
tail =
minTail minlist(tail)
return head i1if head < minTail else minTail

if head < minTail:
return head
else:
return minTail

Implementation

Step 2: Remove the minimum from the list

def removeSmallest(l): def helper (l, minimum) :
if len(l) == 0: if 1 == []:
return 1 return []
else: else:
minimum = minlist (1) head = 1[0]
return helper (1, minimum) tail = 1[1:]
1f head == minimum:

return tail
else:

return [head] + helper (tail,

minimum)

def removeSmallest (1) :

1f 1 == []:
return []

else:
head = 1[0]
tail = 1[1:]
tail removeSmallest = removeSmallest (tail)
1f minlist(l) == head:

return 1[1:]

else:

return [1[0]] + tail removeSmallest

some_sorting_algorithm?

2. Insertion Sort

Idea: Pick one from the
unsorted part and place it in
the right position.

Steps:

6 5 3 1 8 7 2 4

some_sorting_algorithm?
2. Insertion Sort

Steps:

3 4| 1| 5 |2 Recursive Thinking:

Pick the head to insert: 3
3 1/ 2 a4 |s Sorted the tail: [1, 2, 4, 5]
Insert head to the correct position: [1, 2, 3, 4, 5]

some_sorting_algorithm?

3. Merge Sort
J Idea: Divide and conquer
Steps:

6 5 3 1 87 2 4

some_sorting_algorithm?

3. Merge Sort

Steps:
3765 8|/ 21 4 Recursive Thinking:
3 /75 6 2 8 1 4 Split the list into two halves: [3, 7, 6, 5], [2, 8,1, 4]

5],
Sort each of them: [3, 5, 6, 7], [1, 2, 4, 8]
Merge two halfs:[1, 2, 3,4, 5, 6, 7/, 8]

Interesting Demos

1. https://www.toptal.com/developers/sorting-algorithms

2. https://www.cs.usfca.edu/~qgalles/visualization/ComparisonSort.html
3. http://sorting.at/

>

Play All

A4
v
v

0w
i

: Vv

)

<

«Q

T

©
.

;v

v
P
(0]

M

A /

M“uwm..
-

®
£
x

[T

N"“"" “||“|||||II ;
=3

o v

“\||\||||||m.-TJ“““”""W

v
I

|

> '?E%

e

N ||||||"I

I
"
I

‘ l“ | ”||||| H
g

https://www.toptal.com/developers/sorting-algorithms
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://sorting.at/

Problem set 4

Please work on Question 1, 2, 3 in groups.

