

Welcome back to CS30 Discussion!

● HW3 has been posted, dues Thursday, November 5, at
11:30pm.

● Mid-term Grading.

Sorting algorithm

Sorting algorithm

A sorting algorithm will put items in a list into an order, such as alphabetical or
numerical order. You can decide either increasing or decreasing order.

For example, a list of customer names could be sorted into alphabetical order by
surname, or a list of people could be put into numerical order by age.

Sorting algorithm

Sorting a list of items can take a long time, especially if it is a large list.

A computer program can be created to do this, making sorting a list of data much
easier.

e.g. some_sorting_algorithm([4, 3, 5, 2, 1]) → [1, 2, 3, 4, 5]

some_sorting_algorithm?

1. Selection Sort

Steps:

Idea: Find the smallest item in
the list and place it in the front.

4 3 1 5 2

1 3 4 5 2

1 2 4 5 3

1 2 3 5 4

1 2 3 4 5

Recursive Thinking:
Find Minimum of the list: 1
Remove the minimum from the list: [4, 3, 5, 2]
Sort the removed list: [2, 3, 4, 5]
Append minimum to the head of the list: [1, 2, 3, 4, 5]

Implementation

def selectionSort(lst):
if len(lst) <= 1:

return lst
else:

minimum = minlist(lst)
removed = removeSmallest(lst)
return [minimum] + selectionSort(removed)

Implementation
call selectionSort([1, 5, 2])
input1 is [1, 5, 2]

minimum : 1
removed : [5, 2]
call selectionSort(removed) : ?

input2 is [5, 2]
minimum : 2
removed : [5]
selectionSort(removed) : [5] (base case)
return [2] + [5] -> [2, 5]

return [1] + [2, 5] -> [1, 2, 5]

def selectionSort(l):
if len(l) <= 1:

return l
else:

minimum = minlist(l)
removed = removeSmallest(l)
return [minimum] + selectionSort(removed)

Implementation

Step 1: To find the minimum in a list.

def minlist(l):
if len(l) == 1:

return l[0]
else:

head = l[0]
tail = l[1:]
minTail = minlist(tail)
return head if head < minTail else minTail

 if head < minTail:
return head

else:
return minTail

Implementation

Step 2: Remove the minimum from the list

def removeSmallest(l):
if len(l) == 0:

return l
else:

minimum = minlist(l)
return helper(l, minimum)

def helper(l, minimum):
if l == []:

return []
else:

head = l[0]
tail = l[1:]
if head == minimum:

return tail
else:

return [head] + helper(tail, minimum)

def removeSmallest(l):
if l == []:

return []
else:

head = l[0]
tail = l[1:]
tail_removeSmallest = removeSmallest(tail)
if minlist(l) == head:

return l[1:]
else:

return [l[0]] + tail_removeSmallest

some_sorting_algorithm?

2. Insertion Sort

Steps:
Idea: Pick one from the
unsorted part and place it in
the right position.4 3 1 5 2

3 4 1 5 2

1 3 4 5 2

1 3 4 5 2

1 2 3 4 5

some_sorting_algorithm?

2. Insertion Sort

Steps:

Recursive Thinking:
Pick the head to insert: 3
Sorted the tail: [1, 2, 4, 5]
Insert head to the correct position: [1, 2, 3, 4, 5]

43 1 5 2

1 2 4 53

1 2 3 4 5

some_sorting_algorithm?

2. Merge Sort
Steps:

Idea: Divide and conquer

3 7 6 5 8 2 1 4

3 7 5 6 2 8 1 4

3 5 6 7 1 2 4 8

1 2 3 4 5 6 7 8

3. Merge Sort

some_sorting_algorithm?

Steps:

Recursive Thinking:
Split the list into two halves: [3, 7, 6, 5] , [2, 8, 1, 4]
Sort each of them: [3, 5, 6, 7] , [1, 2, 4, 8]
Merge two halfs: [1, 2, 3, 4, 5, 6, 7, 8]

3 7 6 5 8 2 1 4

3 7 5 6 2 8 1 4

3 5 6 7 1 2 4 8

1 2 3 4 5 6 7 8

3. Merge Sort

Interesting Demos

1. https://www.toptal.com/developers/sorting-algorithms
2. https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
3. http://sorting.at/

Fast😄Slow😭

https://www.toptal.com/developers/sorting-algorithms
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://sorting.at/

Problem set 4

Please work on Question 1, 2, 3 in groups.

