
CS 30 Discussion
Week 10



Welcome back to CS30 Discussion

● HW #5 grades have been posted.
● HW #6 grades will be posted next week.
● Final exam on next Wednesday (12.16).
● Full solutions to the practice problems we discuss today will be 

posted on CCLE after the discussion.
● I’ll move my last office hour to next Tuesday 4-6pm. 



Final Exam Review



Dictionary
Dictionaries are used to store data values in key:value pairs.

A dictionary is a collection which is unordered, changeable and does not 
allow duplicates.

Dictionaries are written with curly brackets, and have keys and values:

thisdict = {

  "brand": "Ford",

  "model": "Mustang",

  "year": 1964

}

def count(l):
    counter = {}
    for x in l:
        if x not in counter:
            counter[x] = 1
        else:
            counter[x] += 1
    return counter



For Loops
for loop:  executes some block of code once for each element of a given list

Loop recipe:

1. Introduce an accumulator variable to store the value to return.

2. Initialize the accumulator to the value that should be returned if  the list is empty.

3. How to write the body of a loop of the form "for x in l" ?
   Consider the case where the loop is on its last iteration, so x is the last element of the list.
   Assume that the accumulator contains the right answer for the prefix of the list up to x.
   Update the accumulator to incorporate x into the result.



Example
def sumList(l):

   result = 0

   for x in l:

       result = result + x

   return result

def sumListRec(l):

if l == []:

return 0

else:

head = l[0]

tail = l[1:]

tailRes = sumListRec(tail)

return head + tailRes



While loops
while loop:  executes some block of code as long as the loop condition is true (in other words, until the loop 
condition becomes false)

Loop recipe:

1. Introduce an accumulator variable to store the value to return.

2. Initialize the accumulator to the value that should be returned if the loop never runs

3. Write a loop condition

4. In the body of the loop accumulate results 

5. Update the loop condition variable



Example

def oddList(start, end):
    result = []
    i = start
    while i < end:
        if i % 2 != 0:
            result = result + [i] 
        i+=1
    return result

# 1. Return a list of odd numbers 

in a given range start, end 



def contains_ie(string):

  found = False

  i = 0

  while not found and i < len(string):

  if string[i] == 'i' and string[i+1] == 'e':

  found =  True

  i += 1

  return found

Q1. There's a bug in this code; on certain inputs it 
will crash! Identify the bug and give an example 
of some inputs that will reveal the buggy 
behavior.



Correct code
def contains_ie(string):

  found = False

  i = 0

  while not found and i < len(string)-1:

  if string[i] == 'i' and string[i+1] == 'e':

  found =  True

  i += 1

  return found

Q2. What value does "i" have just before the 
function returns? 

contains_ie("bierhall")
contains_ie("wonderbubbles")
contains_ie("weirdo")



Tips and Tricks
1. Use this when you only need to touch every element in a list or string once.

for x in my_list:

  doSomething(x)

2. Use this when you need to touch every element in a list or string and also 

need the indexes:

for i in range(len(my_list)):

  doSomething(my_list[i])



3. Use it when you need to loop an unknown number of times, until a certain 

condition becomes false, 

i = 0

while(i < n):

  doSomething with n, i etc

  i+=1



Map review
● map is a function takes two arguments:

the first argument is the function f to use to transform each list element
the second argument is the list l to transform

● map always returns a transformed list l’
● len(l) = len(l’), order of elements in l is the same as l’ but values 

can be different
● Function f can be a lambda or a defined function, f should always return a value



Filter Review
● filter is a function takes two arguments:

the first argument is the function f to use to filter a  list element
the second argument is the list l to filter

● filter always returns a list l’ which is a subset of the list l
● len(l’) <= len(l), order of elements  in the smaller l’ is preserved
● The return value of a function f is always boolean (True/False)
● list(filter(f, l)) returns a list of all elements e of l 

such that f(e) = True



Lambda review
● To avoid writing small function definitions, we can use lambda
● Lambda is a keyword that means that we're defining an anonymous 

function.
● Example lambda:

○ (lambda x: x**2 + 2*x - 5)(5)= 30

○ (lambda x: x if x > 0 else 0)(-1) = 0



Reduce Review
● reduce is a function takes two arguments (three in a general usage):

○ the first argument is the function f that takes two arguments where the first argument is the 
result of reducing the list so far and the second argument is the element of the list

○ the second argument is the list l to reduce
○ *the third argument is the initial value

● reduce(f, [x1,x2,x3]) performs the computation  f(f(x1, x2), 
x3)



Recursion 

Remember that recursive functions are just functions that call 

themselves. 

You first call yourself recursively on a slightly smaller version of the 

argument, before doing anything else.  

Then the key is that you get to assume that the recursive call does the 

right thing, and now your job is to figure out how to use that result to 

produce the overall result that is desired.



General Recipe
 the general 'recipe' of defining a recursive function:
 - 1 or more *base cases*

   - handle the "smallest" arguments
 - 1 or more *recursive cases*

   - use the results of one or more *recursive calls* with "smaller" arguments
   - the magic of recursion:
   - you get to *assume* that these recursive calls do the right thing!



Recursion Recipe for list based problems

● You always need a base case: small input with obvious answer

● break into the first item (head) and the rest (the tail)
○ head = l[0]

○ tail = l[1:]

● assume your function gives you the right answer for the tail
○ tailResult = recursiveCall(tail)



If-elif-else Syntax

if expression1:
   statement(s)
elif expression2:
   statement(s)
elif expression3:
   statement(s)
else:
   statement(s)

Remember: if-elif-else implies that each "case" is 
exclusive.

What would the following print out if x were 5?

if x < 10:

   return "I'm under ten!"

elif x == 5:

  return "I'm five!"

else:

  return "I give up"



Function review

● Function arguments are just variables.
● They take different data values

Syntax:

def
   
   

functionName (arguments):

statement(s)

return something





Instructor Evaluations due soon.



WorkSheet

Please work together on the problem set.

● Q3: crosswordFind_loops
● Every question in Part 2


