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ABSTRACT
Paths of online users towards a purchase event (conversion) can be

very complex, and guiding them through their journey is an integral

part of online advertising. Studies in marketing indicate that a con-

version event is typically preceded by one or more purchase funnel

stages, viz., unaware, aware, interest, consideration, and intent. In-

tuitively, some online activities, including web searches, site visits

and ad interactions, can serve as markers for the user’s funnel stage.

Identifying such markers can potentially refine conversion predic-

tion, guide the design of ad creatives (text and images), and lead to

higher ad effectiveness. We explore this hypothesis through a set of

experiments designed for two tasks: (i) conversion prediction given

a user’s activity trail, and (ii) funnel stage specific targeting and

creatives. To address challenges in the two tasks, we propose an at-

tention based recurrent neural network (RNN) which ingests a user

activity trail, and predicts the user’s conversion probability along

with attention weights for each activity (analogous to its position

in the funnel). Specifically, we propose novel attention mechanisms,

whichmaintain a global weight for each activity across all user trails,

and also indicate the activity’s funnel stage. Use of the proposed

attention mechanisms for the first task of conversion prediction

shows significant AUC lifts of 0.9% on a public dataset (RecSys 2015

challenge), and up to 3.6% on three proprietary datasets from a

major advertising platform (Yahoo Gemini). To address the second

task, the activity weights from the proposed mechanisms are used

to automatically assign users to funnel stages via a scalable scoring

method. Offline evaluation shows that such activity weights are

more aligned with editorially tagged activity-funnel stages com-

pared to weights from existing attention mechanisms and simpler

conversion models like logistic regression. In addition, results of

online ad campaigns in Yahoo Gemini with funnel specific user

targeting and ad creatives show strong performance lifts further

validating the connection across online activities, purchase funnel

stages, stage-specific custom creatives, and conversions.
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1 INTRODUCTION
Studies in marketing [7, 13] strongly indicate the existence of a pur-

chase funnel, i.e., a consumer (user) may go through multiple stages

before finalizing a purchase (conversion). A typical purchase funnel

has the following stages before a purchase event: unaware, aware,

interest, consideration and intent. Users in some of these funnel

stages (i.e., consideration, and intent) may have a stronger likeli-

hood of conversion than others (i.e., unaware, aware, and interest).

To influence users towards conversion, online advertising platforms

need to: (i) predict a user’s conversion probability [3, 16], and (ii)

expose users to appropriate ads. Intuitively, understanding the pur-

chase funnel for an advertiser, i.e., the kind of online activities users
perform in each funnel stage, can not only improve conversion

prediction, but also guide the design of custom ad creatives for

users in each funnel stage.

Given the intuitive benefits of understanding the purchase fun-

nel, we consider observable online activities (i.e., search queries,

site visits, online article views, and ad interactions) which online

users perform before converting on an advertiser. In particular,

given a trail (sequence) of relevant online activities that a user

has performed, we want to estimate the user’s funnel stage for a

given advertiser in an interpretable and scalable manner (vis-a-vis

activities, trail length, and advertisers). Since there is no available

groundtruth in this context
1
, and the activity trails could be ar-

bitrarily complicated (e.g., having loops), we simplify our task to

understanding a single activity’s position in the funnel. We explain

and justify this simplification in further detail below using the

example of a theme park.

Illustrative example: Consider a theme park, and a trail of a (rele-

vant) user activities as shown in the left half of Figure 1. In general,

users might perform a subset of activities listed on the left half,

1
To the best of our knowledge, there are no datasets which have funnel stage labels for

a trail of online activities including search, site visits, content views and ad interactions

relevant to a given advertiser.
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and they might do it in any arbitrary order with repetitions. A

human editor can parse the activity trail in Figure 1, and assign

(tag) activities to the theme park’s purchase funnel stages as shown

in Figure 1. The editor may have the following thought process

while tagging activities with funnel stages.

searched about kids medicine

read about theme park characters

read about recent theme park shows

visited theme park website

searched about theme park discounts

searched about theme park packages

email confirmation for theme park pass purchase

read about play school for kids
unaware

aware

interest
consideration

intent
purchase

Figure 1: Example showing an assignment of user activities
to funnel stages for a theme park visit.

• Reading and searching about kids does not indicate the user’s

awareness about the theme park, but having kids indicates

a higher propensity to purchase theme park tickets; hence

such activities may be used to identify unaware users. In
comparison, reading about theme park characters shows

that the user is aware about the theme park.

• Reading about recent theme park shows indicates the user’s

potential interest in visiting the theme park. Visiting the

theme parkwebsite indicates further consideration, and search-
ing about discounts indicates stronger intent.

The above example illustrates that activities can serve as markers

for a user’s funnel stage. Intuitively, such markers can help towards

both conversion prediction (e.g., users doing intent stage activities

have a higher probability of conversion), and guiding custom cre-

ative design. As an example of funnel specific creatives, users in

the unaware stage may be shown an ad to increase their awareness

about the park (with clicks landing them on introductory videos

and blogs). Whereas, users in the intent stage may be shown deals

landing them directly on the park’s purchase webpage. Given such

plausible benefits, in this paper, we focus on leveraging the activity-

funnel connection for two tasks: (i) improving upon state-of-the-art

conversion prediction models, and (ii) testing funnel specific cre-

atives for an advertiser.

In the case of (i), existing state-of-the-art conversion models for

online advertising are either sequential (e.g., RNN with attention

[23]) or non-sequential (e.g., deep residual networks [18]). In prin-

ciple, sequential models are better suited for predicting outcomes

(e.g., conversion) given a sequence of user activities [23]. However,

existing sequential models miss out on an explicit mechanism to

identify activities representative of funnel stages
2
, and refine their

predictions accordingly. We address this deficiency, by proposing

two global attention mechanisms for RNN based conversion pre-

diction; in particular, the proposed attention mechanisms learn a

weight corresponding to the activity’s position in the purchase

funnel.

2
In the conversion prediction task, there is no existing data set to infer funnel tags for

activities relevant to an advertiser. The conversion model is trained on trails of user

activities with a binary label indicating conversion or no-conversion.

In the case of (ii), although there is no prior work (to the best

of our knowledge) on data driven design of funnel stage specific

creatives, there has been prior work on assigning users directly

to a purchase funnel stage using hidden Markov models (HMMs)

ingesting user activity trails [1, 9]. Such HMMs do not require

any activity-funnel understanding, but at the same time it is non-

trivial to infer (from the trained HMM) which activities are tied

to a particular funnel stage; hence, they miss out on valuable (ac-

tivity) insights for the advertiser as well as guidelines for creative

design (we describe additional shortcomings of HMM approaches

in Section 3 on our proposed architecture). Therefore, we take the

route of inferring activity-funnel tags automatically from a trained

sequential conversion model (from RNN attention weights in par-

ticular). Using such funnel tags, we identify users in various (user)

funnel stages via a deterministic (scoring) logic applied to the user

activity trails with activity-funnel tags for each activity in their trail.

The identified users can then be exposed to (user) funnel specific

creatives based on activities assigned to each funnel stage. Our user

scoring logic is scalable in terms of the number of activities, trail

length and the number of advertisers.

In summary, our main contributions can be listed as follows:

(1) We propose two global attention mechanisms for RNN based

conversion prediction which significantly outperform exist-

ing attention based baselines on a public data set (RecSys

2015 challenge, 0.9% AUC lift) as well as datasets for three

advertisers from a major advertising platform, i.e., Yahoo
Gemini (up to 3.6% AUC lift).

(2) We use the RNN activity attention scores (from the con-

version prediction model) to assign funnel stages to activi-

ties. Although a heuristic, the automatically assigned funnel

tags are very close to editorial tags. The proposed attention

mechanisms achieve the best accuracy in terms of matching

editorial tags (measured by RMSE and NDCG).

(3) Automatically tagged activities are consumed in a determin-

istic user scoring logic (user funnel assignment for tagged

activity trails) to identify a user’s funnel stage, and to show

the user funnel specific creatives. Offline user scoringmetrics

also show the superiority of the funnel tags inferred from

the proposed attention mechanisms. In addition, our experi-

ments involving online ad campaigns in Yahoo Gemini with

funnel specific ads show significant incremental conversion

rate (3%-6%), as well as lift in click-through-rate (CTR) and

reduced user acquisition costs (cost-per-action) compared

to conventional campaigns. We also share a few non-trivial

activity insights (anonymized by advertiser domain) which

we discovered during our experiments.

The remainder of this paper is organized as follows. In Section 2,

we describe related work, followed by Section 3 on our overall

architecture. We then cover the conversion prediction setup, and

proposed attention mechanisms in Section 4. This is followed by

Section 5 on user scoring (i.e., assigning funnel stages to users)

and Section 6 on creative design. The experimental results on both

conversion prediction and funnel specific ad targeting are covered

in Section 7. Section 8 covers the conclusion, and we provide a

reproducibility supplement at the end (Section 9).
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2 BACKGROUND
In this section, we first give a brief overview of online advertis-

ing. This is followed by related work on ad click and conversion

prediction models, purchase funnel modeling in advertising, and

attention mechanism in RNNs.

Online advertising. In a regular online advertising setup [3, 16],

advertisers sign up with ad platforms (e.g., Google Ads, Facebook
Ads, Yahoo Gemini) and launch campaigns to show ads on online

properties associated with the ad platform. Advertisers typically

create one or more creatives to target relevant audience (i.e., ad
groups) and for each ad group they specify a bid. The bid is essen-

tially the maximum amount they are willing to pay for a certain

action (e.g., ad click). At each ad serving opportunity, an auction

is run by the ad platform as follows. Bids from multiple advertis-

ers (campaigns) are ranked, and the one with the highest bid is

chosen for the ad serving opportunity, eventually leading to an ad

impression. Based on the impressions that an advertiser wins in the

auction, the advertiser typically cares about include click-through-

rate (CTR), conversion rate (adCVR), and cost-per-action CPA [3]

where:

CTR =
total clicks

total impressions
, adCVR =

total conversions

total clicks
, (1)

CPA =
total spend

total conversions
. (2)

Click and conversion prediction models: Click and conversion

prediction models play an important role in auctions for ads, and

are crucial for advertisers to target relevant users (i.e., users who are
more likely to click and convert) [3, 11]. In large scale advertising

setups (e.g., platforms owned by Google, Facebook, and Yahoo),

logistic regression (LR) models have been successfully used [3, 16].

Recently, more sophisticated deep learning models have also been

used for CTR and CVR prediction, e.g., deep residual networks

[18] and deep sequential models [8, 10, 23]; the sequential models

perform significantly better than their non-sequential counterparts.

Purchase funnel modeling: Prior work on purchase funnel model-

ing in the context of online advertising focuses on assigning users

directly to a purchase funnel stage using hidden Markov models

(HMMs) ingesting user activity trails [1, 9]. In [1], the focus is on

multi-touch ad attribution using the purchase funnel stages, while

the work in [9] is mainly on the negative impact of ads (annoy-

ance) vis-a-vis user funnel stages. In theory, it is also possible to

use conversion models to cluster users [20] (e.g., by RNN hidden

layer representations), and assign funnel stages to user clusters.

However, such approaches (HMM and user clustering in general)

miss out on explicitly infering the connection between activities

and funnel stages, which is a major focus in this paper.

Attention Mechanism: Attention mechanism for RNNs was first

introduced in the context of neural machine translation [2]. The

mechanism automatically detected a linguistically plausible align-

ment between a source sentence and the corresponding target

sentence. Following this, [15] proposed global and local attention

mechanisms. The global approach looked at the entire sentence, but

the local one focused on a subset of the sequence when performing

the neural translation. The ensemble attentionmodel in [15] yielded

the state-of-the-art result in the WMT’15 English-to-German trans-

lation task. However, both the local and global approaches ignored

the overall significance of each element in the sequence (which

we focus on in this paper). In [21], a hierarchical attention model

for RNN was proposed, which enhanced document classification

performance by using both character-level and word-level features.

[5] proposed a long short-term memory (LSTM) network to tackle

the machine reading problem. In their work, a self-attention mecha-

nism was proposed to draw the correlation between each word and

the previous set of words. In a more recent work, [19] proposed a

multi-head self-attention mechanism to get rid of recurrent neural

units, and to allow self-attention encode the context information

for each word of the sentence. Recently, the attention mechanism

has also been applied in many other applications in advertising,

such as conversion prediction [17], click prediction [24], and search

advertising [22]. In this paper, we propose two variants of the at-

tention mechanism for RNNs; they are inspired by the purchase

funnel, and enable the inference of a user activity’s position in the

funnel.

3 AD TARGETING ARCHITECTURE
In this section, we give an overview of our proposed architecture

for targeting users with funnel stage specific ads, and also justify

the need for activity-funnel understanding. Given an advertiser,

the high level goal is to understand which activities can serve as

markers for a user’s funnel stage, and leverage such understanding

to show users ads customized for a funnel stage. We break down

this goal into sub-tasks as follows.

(1) Activity selection: automatic selection of activities relevant

to the advertiser’s conversion event leading to seed listAADV .

(2) Activity→ funnel tagging: automatic assignment of a funnel

stage to each activity in AADV without human labeling.

(3) Activity trail→ funnel mapping (user scoring): automatic as-

signment of user trails (of tagged activities) to funnel stages.

(4) Creative design and targeting: editorial ad customization

using funnel tags in the seed list, and targeting users in a

funnel stage with such custom ads.

For the task of activity-funnel tagging listed above, we focus on us-

ing activity attention weights from a trained RNN based conversion

model. The intuition here is that activities with higher attention

weights (i.e., with higher influence towards a conversion event) may

be representative of funnel stages closer to conversion. Exploring

this heuristic for multiple advertisers, and validating its accuracy

via intrinsic evaluations (i.e., alignment with editorial tags) as well

as extrinsic evaluations (user scoring and ad campaign metrics)

is one of the major contributions in this paper. Figure 2 gives a

block level overview of our architecture, and shows how activity-

funnel tagging fits in the system. We describe below the detailed

RNN
conversion activity-funnel

user

creatives

ad
serving

model
tagging

scoring
user
trails prediction

Figure 2: Overview of the entire ad targeting system.
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justification behind focusing on activity-funnel tagging.

Justification for activity-funnel tagging: We introduce activity-

funnel tagging as an intermediate sub-task, as opposed to directly

mapping user trails to funnel stages (as in HMM based formulations

[1, 9]). Our approach is motivated by the following reasons.

• It is relatively easier and faster to generate an editorially

labeled data set (via domain experts) with activity-funnel

tags than generating a data set with user trail-funnel tags.

Such a dataset can be used to verify the accuracy of tags

vis-a-vis human judgement.

• Training and online scoring (user stage inference) of HMMs

may not be scalable with respect to number of activities,

trail lengths, and the number of advertisers (since we need a

model for each advertiser). Activity-funnel tags learnt offline

(from a trained RNN) on the other hand, can be used with a

scalable scoring logic suitable for low latency ads serving.

• Activity-funnel tags can lead to valuable insights for ad-

vertisers, and guidelines for creative design. In additon, in-

sightful search queries (activities) with such funnel tags, can

be directly used in conjunction with search retargeting ad

campaigns for advertisers (who typically bid for obvious

search keywords with their product/brand’s name). In com-

parison, reverse engineering a trained HMM to infer such

activity-funnel insights may not be straightforward, and is

an independent exercise beyond the scope of this paper.

4 ACTIVITY-FUNNEL TAGGING VIA
CONVERSION PREDICTION

In this section, we first explain the conversion prediction setup in

Section 4.1 (including seed list selection for an advertiser). This is

followed by Section 4.2 which formally describes gated recurrent

unit (GRU) based RNNs with existing (local) attention mechanism;

we explain how this existing mechanism can be used for conversion

prediction and activity-funnel tagging. Next, in Sections 4.3 and

4.4, we introduce two (global) attention mechanisms, and explain

how they are designed towards better conversion prediction, and

activity-funnel tagging.

4.1 Conversion prediction setup
Consider a user activity trail (sequence) a = [a1,a2, . . . ,al ], where
the online activities at ∈ AADV are in chronological order,AADV
is the set of relevant online activities (i.e., the seed list) for advertiser
ADV , and l is the length of the trail. Seed list selection is similar

to filter based methods for feature selection; we select only those

activities whose conversion rate
3
exceeds a pre-determined thresh-

old. Given such an activity trail a corresponding to a user, we are

interested in the probability of the user converting on the advertiser

ADV . In other words, the goal of sequential conversion prediction

is to estimate the following probability:

P (conversion on ADV |a) = P (yADV = 1|a) ,

3
The conversion rate for an activity a0 is defined as the ratio of count of users who

did a0 , and then converted on the advertiser within a time window (e.g., 3 months)

over the total count of users who did a0 . In addition, all purchase activities for ADV
are known a priori, and excluded from the tagging process; the trails of all converters

end with the activity prior to the purchase (conversion) activity.

where yADV is a binary variable indicating conversion (yADV = 1)

or no conversion (yADV = 0). We consider a separate conversion

model for each advertiser in our setup, and hence the task of con-

version prediction boils down to solving the above binary classi-

fication problem. In addition, we are also interested in extracting

(from the conversion prediction model) a set of weights for activi-

ties in AADV such that the weights are indicative of the position

(stage) of the activities in the purchase funnel. We will refer to

this secondary goal as the activity-funnel inference problem in the

remainder of the paper, and denote the set of extracted weights by

βββ =
[
β1, β2, . . . , β |AADV |

]
.

In this paper, to address both conversion prediction and activity-

funnel tagging, we focus on the use of RNN based conversion

prediction models. In particular, we leverage existing RNN attention

mechanisms, and propose two new attention mechanisms aimed at

better conversion prediction, as well as activity-funnel inference

(covered in the following subsections).

4.2 Local attention in GRU based RNN (LATT)
Figure 3 shows a bi-directional GRU based RNN model with (local)

attention mechanism. As shown, the activity embedding layer, bi-

directional GRU layer, and the local attention layer are the major

components of the model; we describe below the details for each

these components.

Input layer and activity embeddings: The activity sequence a =
[a1, . . . ,al ], is fed as input to the activity embedding block, which

learns a low dimensional activity representation xt for each activ-

ity in at ∈ AADV (i.e., xt is the embedding for activity at ). The
randomly initialized embeddings are learnt as a part of the RNN

model training.

Bi-directional GRU layer: As shown in Figure 3, the activity em-

bedding sequence [x1, x2, . . . , xl ] is fed to a bi-directional GRU

layer [6]
4
. The final sequence representation is obtained by ag-

gregating (concatenating) representations from the forward and

backward GRU cell as: ht =
[
h(f )t , h

(b )
t

]
.

Local attention mechanism: The attention mechanism shown in

Figure 3 was first introduced in [2] for the task of neural machine

translation. We briefly discuss below this (local) attention mech-

anism before describing our proposed attention mechanisms in

the following subsections. In this mechanism, an attention layer

is added on top of the GRU-based RNN module, in order to distin-

guish the contribution of each output from the RNN layer towards

final prediction. In particular, it first transforms the RNN outputs

ht (from the GRU cells) to a low dimensional representation ut as
follows:

ut = tanh (Wsht + bs ) . (3)

Then, it introduces a context vector us to be learnt during the

RNN training process. In a sense, it measures how much attention

should be given to each input representation ut . The attention layer

calculates the inner product between ut and us , and normalizes

4
We choose GRU in our setup because its performance is at par with LSTM for many

applications [12], and the model is much simpler. In addition, our proposed attention

mechanisms can be used for LSTM based RNNs without loss of generality.
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sigmoid

v

h
(f)
1

x1 x2 xl

h
(f)
2 h

(f)
l

h
(b)
1 h

(b)
2 h

(b)
l

α1 α2 αl

us

u1 u2 ul

activity embedding layer

a1 a2 al

bi-directional
GRU

local
attention

layer

layer

sequence
activity

Figure 3: Bi-directional GRU based RNN model (with local
attention mechanism) for conversion prediction.

the attention weights through a softmax function as follows:

αt =
exp

(
uTt us

)
∑l
t=1 exp

(
uTt us

) , (4)

where (normalized) attention weight αt ∈ R. The attention layer

outputs vwhich is theweighted summation of all the low-dimentional

vectors ut ’s as the latent representation of each activity sequence:

v =
l∑

t=1
αtht . (5)

Since this attention mechanism only calculates the attention scores

in terms of specific trails, we name this attention model as local

attention mechanism (LATT), i.e., it has attention local to a trail.

Activity-funnel tagging: With LATT, each activity may attain a

wide range of attention weights across different user trails (since

the weight for an activity in each user trail can be different). To get

an aggregate LATT score (across all trails) for each activity, we con-

sider two aggregation functions: (i) max (leading to βββLATT−max ),

and (ii) average of all attention scores for an activity (leading to

βββLATT−avд ). Once such a global activity weight vector is obtained

(βββLATT−max or βββLATT−avд ), the activities are ranked by their

global weight, they are clustered into five groups {0: unaware, 1:

aware, . . . , 4: intent} using the Jenks Natural Breaks algorithm [14]

(higher weighted activities are in stages closer to conversion).

4.3 Global attention mechanism (GATT)
The LATT attention mechanism in Section 4.2 introduces a context

vector us to measure the local contribution of each input activity

towards the combined sequence representation. This neglects the

overall (global) importance of each activity in the purchase funnel.

Therefore, we introduce the idea of a global attention mechanism to

capture the global importance of each activity (similar to its position

in the purchase funnel), and hence refine conversion prediction;

this also enables the computation of funnel tags without the need

for weight aggregations across user trails (as done for βββLATT−max

sigmoid

v

h
(f)
1

x1 x2 xl

h
(f)
2 h

(f)
l

h
(b)
1 h

(b)
2 h

(b)
l

α1

α2

αl

activity embedding layer

softmax

global weights layer

a1 a2 al

βa1 βa2 βal

Figure 4: The global attention-based RNN model.

and βββLATT−avд ). Figure 4 shows the graphical representation of

the proposed global attention mechanism (GATT), and we describe

the details below.

Similar to the activity embedding layer, the global weights layer

(as shown in Figure 4) looks up the global weight βat ∈ R for an

activity at in the input user trail. The global weights (vector denoted
by βββGATT ) are randomly initialized, and are learnt as part of the

RNN training process. For computing global attention associated

with each activity in the input trail, we further normalize each

βt , and compute the latent trail representation as shown below as

shown below:

αt =
exp (βt )∑l
t=1 exp (βt )

, v =
l∑

t=1
αtht . (6)

where αt ∈ R is the normalized attention weight for activity at ,
and v is the latent representation of the user trail. The predicted

conversion probability p̂, and the loss function used for training

can now be specified as:

p̂ = σ
(
wT
v v + bv

)
, (7)

lossGATT =

|trailsADV |∑
i=1

−yi log p̂i − (1 − yi ) log(1 − p̂i ), (8)

where σ (·) is the sigmoid function, lossGATT is the loss function

(aggregated over all user trails with seed list activities for advertiser

ADV ), and yi is the true binary label for the trail i (conversion or

no conversion). From the trained model, the activity-funnel tags

are obtained as follows: the activities are ranked by their global

weights (in βββGATT ), and then clustered into five groups (using

Jenks Natural Breaks) as done in the case of LATT.

4.4 LR attention mechanism (LRATT)
In the GATT model, due to the dependence on v, βββGATT has a

weaker influence on the final conversion prediction. Inspired by

logistic regression (LR) which assigns a unique weight to each ac-

tivity, and has the ability to capture positive and negative influence

of an activity on conversion, we propose the LR attention model

(LRATT) as shown in Figure 5. The LRATT model can also be in-
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sigmoid

vLR

∑×λ

LR component

Figure 5: The LR attention-based RNN model.

terpreted as a wide and deep approach (as in [4] which employs

a wide LR part, and a deep multilayer perceptron part for non-

sequential prediction); LRATTT specifically draws motivation from

the purchase funnel to refine sequential conversion prediction and

activity-funnel tagging. The main difference with the GATT model,

is the update for weights βt which is influenced by both v from the

RNN part, as well as an additional LR loss as described below:

p̂LR = σ (vLR + bLR ) , (9)

lossLR =

|trailsADV |∑
i=1

−yi log
(
p̂LR,i

)
− (1 − yi ) log

(
1 − p̂LR,i

)
,

(10)

lossLRATT = lossGATT + λlossLR , (11)

wherevLR =
∑
at ∈a βat (i.e., the sum of global weights for activities

in the sequence a, and lossGATT is the original GATT loss function

(8). The factor λ balances the influences from both the loss functions.

The predicted conversion probability is still obtained as in GATT

(i.e., p̂ in (8)), and the LR part serves as a regularizer for learning the

global weights. In addition, while training, we initialize the global

weights βββLRATT with weights from a pre-trained LR model for

conversion prediction (over the same dataset). The activity-funnel

tags from LRATT are obtained in the same manner as done for

GATT (activities are ranked and clustered into 5 groups).

5 USER SCORING
After obtaining activity-funnel tags from a conversion model (as

described in Section 4), we use such tags for assigning funnel stages

to activity trails via an interpretable and scalable scoring logic

(described below in Section 5.1). Following our scoring logic, we

explain the metrics for scoring evaluation in Section 5.2.

5.1 MAX-FUNNEL scoring logic
We first setup additional notation for our scoring algorithm (de-

scribed below). For the task of funnel stage assignment, the online

activity trail of user i till (current) time t∗ is denoted by:

Traili (t
∗) = [(acti1, ∆ti1), (acti2, ∆ti2), . . . , (acti j , ∆ti j ) . . .],

where ∆ti j is the time difference between t∗ and the occurrence of

acti j in the trail. Also, if activity acti j ∈ AADV (i.e., the seed list

for ADV ), then there is a corresponding funnel tag f unnel (acti j ) ∈
{0, 1, 2, 3, 4, 5}. The scoring logic is as described in Algorithm 1. In

simple words, the scoring logic looks at a user’s activity trail, finds

the activity with the maximum funnel tag (= user’s funnel stage);

hence the name MAX-FUNNEL scoring. There is an additional

modification for recency, where the funnel tag of activities (for

stages > 1) beyond an expiry limit (∆r ecency set to 4 weeks) from

current time is downgraded to 1 (i.e., aware).

Algorithm 1: MAX-FUNNEL scoring

1: current time :: t∗

2: trail of user i :: Traili (t
∗)

3: initialize tagged trail ::Traili,taддed = [ ]

4: for (acti j , ∆ti j ) ∈ Traili do
5: if acti j ∈ AADV then
6: f uni j = f unnel (acti j )

7: if ∆ti j > ∆r ecency and f uni j > 1 then
8: f uni j = 1

9: append ( f uni j ) to Traili,taддed

10: f un∗i = max

j
( f uni j ∈ Traili,taддed )

As shown above, the stage of user i after scoring is f un∗i , which
is basically the maximum funnel tag in the user’s trail.

Remark 1. The motivation for using a simple scoring scheme as
described above comes from scalability (in terms of number of users,
and trail length) as well as need for intuitive interpretations. The
above scoring scheme can implemented efficiently in a large scale
online setting since for each user we need to only store: (i) the current
stage, and (ii) seed list activities within a recency window for enabling
future funnel stage updates. The proposed scheme is much simpler
compared to scoring an HMM or deep neural network for serving ads
to online users under strict latency constraints (typically of the order
of few milliseconds).

5.2 Scoring evaluation metrics
In this section, we describe metrics for checking the quality of the

seed list AADV , and funnel tagging in the context of user scoring.

5.2.1 Coverage. To measure coverage, we score users based on

their activity trails till current time t∗. Let the set of users assigned
a funnel tag be St ∗ ; this is the set of users with at least one seed

list activity in their trail. Let set of converters in the time window

(t∗, t∗ + ∆t ) be C∆t , where ∆t is set to 4 weeks. The coverage %

is defined as

|C∆t ∩ St ∗ |
|C∆t |

× 100. For example, say 8 million users

were assigned funnel stages for an advertiser on January 1, 2019,

and from January 1 to January 28, 2019, 50 × 103 users converted.

If within the 8 million users, 25 × 103 converted between January

1 and January 1 2019, the coverage % is 50%. Higher coverage %

indicates a better seed list which is able to capture users likely to

convert in the next 4 weeks.
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Conversion rates and validity: Similar to the notation introduced

for defining coverage % above, let St ∗,k be the scored users in

funnel stage k ∈ {0, 1, . . . 5} at time t∗. The conversion rate for

funnel stage k is defined as convk =
|C∆t ∩ St ∗,k |
|St ∗,k |

. For example,

if 1000 users were in funnel stage 3 at t∗ and 100 out of those

converted in the next 4 weeks, then 0.1 is the conversion rate for

stage 3. Validity is computed from the funnel stage wise conversion

rates in the following manner: validity =

∑
3

i=0
∑

4

j≥i 1convj >convi
10

.

In simpler words, it penalizes 1 point (out of

(
5

2

)
= 10 points) for

every mismatched pair of stage wise conversion rates; a mismatch

occurs when a higher numbered funnel stage has conversion rate

less than or equal to the conversion rate of a lower numbered stage.

A perfect score (= 1) for validity means that the conversion rates

are in monotonically increasing order (from unaware to intent).

This is related to the constraint in HMM formulations (for purchase

funnel) which forces the conversion rates from hidden states to

monotonically increase with closeness to the purchase stage [1].

6 CREATIVE DESIGN
Designing creatives with the right message for users in a funnel

stage is an important part of our approach. To guide creative design,

we summarize the seed list of activities (with funnel tags) in the

following manner. First, we identify major themes for each funnel

stage from the seed list. The themes are derived using the frequency

and conversion rate of activities in that stage. Next, we use such

themes as hints to guide creative strategists. For example, in the

case of theme parks, intent stage ads can highlight deals while

aware stage ads can have text like "ideas for holidays" with an

image of the park landing users on introductory blogs. We share

some of the insightful choices we made for running real campaigns

in the supplemental section on reproducibility (Section 9.1).

7 RESULTS
In this section, we go over experimental results associated with con-

version prediction, activity-funnel tags, and online ad campaigns

with funnel specific ad targeting. The remainder of this section

is organized as follows. In Section 7.1, we describe our datasets,

followed by results on conversion prediction in Section 7.2. Finally,

in Section 7.3 we go over offline and online (i.e., from online ad

campaigns) metrics associated with funnel specific ad targeting.

7.1 Evaluation datasets
RecSys 2015 challenge. We conducted conversion prediction ex-

periments on publicly available dataset obtained from RecSys Chal-

lenge in 2015. This dataset contains a collection of sequences of click

events with respective timesteps from Yoochoose website. Some of

the click sessions ended with a purchase event (if so, label was set

as positive, otherwise negative); we describe additional details in

the supplemental reproducibility section (Section 9.2.1).

User activity trails from Yahoo! (Verizon Media). We also con-

ducted experiments using user activity trails data from Verizon

Media. This includes activities done in chronological order by a

user; such activities are derived from heterogeneous sources, e.g., Ya-
hoo Search, Yahoo Gemini and viewing content on other publishers

associated with Yahoo. The representation of an activity comprises

of an activity ID, time stamp, the type (e.g., content view), and a raw
description of the activity (e.g., the query for search activities). We

obtain data from 3 advertisers (e.g., ad clicks, conversions, and site

visits). For describing results, we have anonymized the advertisers

(as ADVi for i ∈ {1, 2, 3}); ADV1 is a mobile phone service provider,

ADV2 is an Internet and cable service provider, while ADV3 is an
employer for ride sharing drivers. In total, the data spanned about

2 billion unique activities, and over 40 million users.

Editorially prepared activity-funnel datasets. For each ADVi (i ∈
{1, 2, 3}), we obtained an editorially prepared dataset of activity-

funnel tags. Domain experts manually tagged the seed list for the 3

advertisers with funnel tags; such tagswere only used for evaluation

and were not a part of the proposed methods. The total number of

activities forADV1,ADV2, andADV3 was 5.8k, 4.3k, and 12.6k. These
datasets were only used to evaluate the global attention weights

vis-a-vis human annotated funnel stages (details in Section 9.1).

7.2 Conversion Prediction
7.2.1 Baseline models for conversion prediction.

• Logistic regression (LR) consuming the user activity trail

as a one-hot encoded feature vector [3].

• RNN in its vanilla version with GRU units.

• RNN + local attention mechanism (LATT) as described
in Section 4.2; also used in [17] for conversion prediction.

• Multi-head self-attention (MH) where the RNN layer is

replaced with a self-attention mechanism [19].

7.2.2 Conversion model configuration and training. We describe

the details in Section 9.3 (reproducibility supplement).

In the remainder of this section, we refer to our proposed models

as GATT-{v1, v2} and LRATT-{v1, v2}. GATT-v1 denotes the global

attention-based RNN model (as in Section 4.3), and GATT-v2 adds

local attention to GATT-v1 (i.e., we concatenate outputs from both

the global and local attention layer before employing a sigmoid

function for classification). LRATT-v1 is as described in Section 4.4,

and LRATT-v2 is the combination of LATT and LRATT-v1, in the

same spirit as done for GATT-v2.

Table 1: TestAUC lifts (%) for conversionprediction forADV1,
ADV2, and ADV3, and absolute test AUC for RecSys2015.

model ADV1 ADV2 ADV3 RecSys2015
lift lift lift AUC

LR - - - 0.669

MH 17.41% 5.42% 9.82% 0.719

RNN 19.18% 5.55% 11.20% 0.715

LATT 18.78% 5.55% 11.48% 0.730

GATT-v1 20.82% 7.48% 14.80% 0.739
GATT-v2 20.95% 7.48% 14.11% 0.739
LRATT-v1 20.68% 7.74% 14.66% 0.737

LRATT-v2 20.82% 7.61% 15.08% 0.736

7.2.3 Conversion prediction AUC results. The (offline) results for

conversion prediction on all datasets are shown in Table 1. The pro-

posed attention mechanisms dramatically improve the conversion
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prediction (test) AUC by 2.17%, 2.19%, and 3.60% on the 3 adver-

tiser datasets (compared to LATT). On the RecSys2015 dataset, our

global attention-based models achieved an AUC of 0.739, which is a

7.0% lift above LR and 0.9% lift above LATT. The results show that

identifying the global importance of activities improves conversion

prediction, whereas considering only local contextual connections

may lead to a partial understanding of the user’s propensity to con-

vert. We also notice that for different datasets, the variants of our

global attention model show slightly different performance. There

is no clear improvement when we concatenate local attention rep-

resentations to the global ones. We conjecture that global attention

for activities in some datasets, such as ADV2, is more important,

than the local attention contributions. In addition, the LR and MH

models seem to be trading-off performance with efficiency.

Table 2: RMSE and NDCG for activity-funnel tagging.

model ADV1 ADV2 ADV3 ADV1 ADV2 ADV3
RMSE RMSE RMSE NCDG NDCG NDCG

LR 6.00 2.93 5.23 0.93 0.93 0.83

LATT-max 4.68 4.14 2.38 0.93 0.91 0.85

LATT-avg 5.11 5.55 2.25 0.92 0.91 0.84

GATT-v1 2.71 3.52 2.24 0.94 0.92 0.86

GATT-v2 2.60 2.98 2.09 0.94 0.92 0.87
LRATT-v1 2.01 2.40 3.18 0.94 0.93 0.85

LRATT-v2 2.14 2.45 3.17 0.94 0.93 0.85

Figure 6: Heatmap showing the alignment of activity-funnel
tags (activities sorted by increasing global weight for each
model) with human annotated funnel tags forADV3 seed list;
activities with higher editorial label are darker.

7.2.4 Activity-funnel tagging (intrinsic evaluation). We obtain the

(global) attention weight for all seed list activities from a conversion

model, and assign funnel tags {0, 1, . . . , 4} as described in Section 4,

i.e., we rank activities by weight, followed by clustering (using

Jenks Natural Breaks algorithm) them into five groups such that

activities with higher weights are assigned funnel stages closer

to conversion. We use the editorially labeled tags (for seed list

activities) to evaluate how the proposed (heuristic) activity-funnel

tagging aligns with human judgement. We use two metrics for such

intrinsic evaluation of funnel tagging: (i) Root Mean Square Error

(RMSE), and (ii) Normalized Discounted Cumulative Gain (NDCG).

For each choice of conversion model (or attention mechanism), the

RMSE is calculated between the assigned funnel tags and the human

annotated tags for all seed list activities. The smaller the RMSE is,

the better the attention/global weights match human judgement.

As shown in Table 2, GATT-v2 shows the best performance for

ADV3, while LRATT-v1 outperforms other models for ADV1 and
ADV2. This shows that the proposed global attention mechanisms

achieve superior funnel tagging performance, and LRATT works

best in majority of the cases. We also use NDCG to evaluate the

quality of activity-funnel tagging. Discounted Cumulative Gain

(DCG) and NDCG at rank n can be calculated as follows:

DCGn =

n∑
i=1

2
r eli

log
2
(1 + i )

, NDCGn =
DCGn
IDCGn

, (12)

where reli is the relevance value of ith activity (i.e., its editorially
annotated funnel stage), IDCGn denotes the ideal DCG at rank n
(when all activities are ranked according to the editorial funnel

stages in a decreasing manner), and n is the size of the seed list,

i.e., |AADV |. We present the NDCG results calculated on all sorted

attention weights in Table 2. The larger the NDCG values are, the

better the attention scores match human judgement. Similar to the

RMSE evaluation, GATT and LRATT outperform the baselines. In

addition to RMSE and NCDG, we plot a heatmap (Figure 6) to visu-

alize the alignment between ADV3’s attention weights and human

annotated funnel stages. For each model, we sort all activities in

an increasing order of their global weight (bottom to top in each

column in Figure 6), and divide each column into blocks of 20 activ-

ities. We then plot the heatmap of the average (editorial) funnel tag

in each block. It shows that the GATT columns are closest (visually)

to the editorial one, backing up the results in Table 2.

7.3 Funnel specific targeting and creatives
We first go over (offline) scoring results in Section 7.3.1, and results

from online ad campaigns in Section 7.3.2.

7.3.1 Scoring coverage and validity. For each of the three advertis-

ers, all users in our dataset from Verizon Media were scored (using

the MAX-FUNNEL logic in Section 5.1) with activity trails span-

ning one year, and the conversion window was a 4 week period.

The seed list coverage (as defined in Section 5.2.1, independent of

the model used for funnel tagging) was: 81.9% for ADV1, 76.4% for

ADV 2, and 50.72% for ADV3. The model validity results (as defined

in Section 5.2.1) across different choices of global weights (from

conversion models) for activity-funnel tagging are shown in Ta-

ble 3. Firstly, it is remarkable to see that conversion rates line up in

mostly increasing order after our intuitive scoring method with the

editorial (human) funnel tags. Secondly, the LRATT model achieves

the same performance as the editorial version for ADV1, and is the

closest to human versions for ADV2 and ADV3 (0.8 vs. 0.9). It is

promising to see the LRATT model match human performance.

7.3.2 Online performance of funnel specific creatives. Our online
ad campaigns for ADV1, ADV2, and ADV3 using funnel specific tar-

geting were setup as independent campaigns in the Yahoo Gemini
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Table 3: Validity metrics.

model ADV1 ADV2 ADV3
human 1 0.9 0.9
LR 0.8 0.5 0.5

LATT-avg 0.9 0.7 0.6

LATT-max 0.8 0.7 0.2

GATT-v1 0.8 0.7 0.5

GATT-v2 0.7 0.7 0.3

LRATT-v1 1 0.7 0.8
LRATT-v2 0.9 0.8 0.7

platform for a period of two months; each funnel stage was a sep-

arate ad campaign with its own creative. For reproducibility, we

have covered details about the campaign setup and test-control

split in Section 9.4). As a result of our campaigns, the (incremental)

conversion rate lift in test versus control bucket (not exposed to

our ad campaigns) was: 3%, 4% and 6% for ADV1, ADV2, and ADV3
respectively; where the conversion rate in each bucket is the ra-

tio of converters from the bucket to the total number of users in

the bucket. Clearly, there is a significant increase in conversions

when users are exposed to our campaigns. To study how funnel

specific targeting performs vis-a-vis conventional campaigns (using

CTR and CVR prediction models [3] with regular creatives), we

compared the funnel stage-wise CTR and CPA performance for

ADV2 with a regular campaign for ADV2 (details in Section 9.4).

The results are shown in Table 4, and clearly the LRATT model has

the highest number of funnel stages with better CTR and lower

CPA. This is in line with LRATT doing well for ADV2 in terms of

RMSE, NDCG and validity. Most funnel stages see a significant CTR

improvement compared to the regular campaign, validating custom

creatives. We sees lower CPAs for the unaware funnel stage; we
hypothesize that this might stem from lower competition for target-

ing such users (whom our custom ads enticed towards conversion).

8 CONCLUSION
The proposed global attention mechanisms not only outperform

conversion prediction baselines in terms of AUC, but also produce

activity attention weights which are closely aligned with human

annotated funnel tags enabling automatic activity-funnel tagging

for an arbitrary advertiser. In terms of funnel specific creatives, our

approach is a stepping stone towards identifying online users in

interpretable funnel stages, targeting themwith custom ads, leading

to higher CTR and valuable activity insights for an advertiser.
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9 APPENDIX (REPRODUCIBILITY NOTES)
In this Appendix (reproducibility supplement), we go over addi-

tional details required for reproducing the results presented in this

paper.

9.1 Seed list generation, editorial tagging and
creatives

In this section, we describe some insights, and the choices involved

in the seed list generation and editorial funnel tagging of seed list ac-

tivities (by domain experts) which might be helpful for reproducing

the results presented in our paper.

To come up with a seed list, we select top k activities by conver-

sion rate for a given advertiser. The conversion rate for an activity

ai is defined as the ratio of count of users who did ai , and con-

verted within a time window (e.g., 3 months) over the count of

users who did ai . The choice of k can be such that it is possible to

do editorial curation within an ad platform’s time constraints, e.g.,
a few hundred activities can be reviewed by an editor in a matter of

hours. The editor can also add a few obvious activities like visiting
websites or ad clicks of the advertiser to the initial seed list. The

conversion rate based method suffers from noise stemming from

sparse conversions. The editorial curation is done to remove such

noise from the initial seed list. This list is further passed on to a

word2vec based expansion method to expand it with contextually

similar activity items.

As mentioned in Section 7.1, we consider three real advertis-

ers/brands (anonymized as a mobile phone service provider, an

Internet service and cable service provider, and an employer for

ride sharing drivers). Similar to the example given for a theme

park visit (funnel stages) in Section 1, the domain experts reviewed

the seed list for each advertiser, and categorized the activities into

different themes. For example, for ADV3 (driver employer), the ob-

served activity themes (seen in search queries, content views and

site visits) included: (i) queries for part time jobs, (ii) reading about

life of ADV3 employees, (iii) clicking on ads from ADV3 and visit-

ing ADV3 website, (iv) checking employer requirements, and (v)

queries for sign-up page. The domain experts labeled themes (and

associated activities) in: (v) as lower funnel (closest to conversion),

(ii)-(iv) as mid-funnel, and (i) as upper funnel stages (farthest from

conversion). Such an editorial labeling led to a scoring validity of

0.9 (as reported in Table 3 for ADV3). In this context, it is remark-

able to see that an automatic activity-funnel tagging method based

on attention weights (LRATT-v1) comes very close (validity=0.8

for ADV3 as in Table 3) to human labeling performance without

employing domain experts and explicit theme identification.

In terms of creative guidance, the funnel tagging process (both

editorial and automatic based on attention weights) led to highly in-

terpretable themes in each stage. For example, some search queries

in ADV3 seed list which were automatically identified in the mid-

funnel stages (interest and consideration) were about users search-

ing for car leasing options to support their employment as a ride

sharing driver. Discovering such interesting activities led to the

development of creatives (and landing pages after ad clicks) which

could guide interested users towards such leasing option offered by

ADV3. This is one among the numerous insights which were discov-

ered in the funnel tagging process, and which greatly influenced

the creatives used in our online experiments.

9.2 Additional details for evaluation datasets
9.2.1 Recsys 2015 dataset. Items that appeared less than 5 times

were discarded, and the sessions with length equal to 2 or less

were filtered out. These preprocessing steps resulted in 4,428,037

sessions, out of which 377,255 ( 8.5%) were labeled as positive. We

further split sessions into 90% for training and 10% for testing.

9.3 Conversion model configuration and
training

In our experiments, we randomly initialized the activity embedding

in 128 dimensions. We set both local and global attention size as

50. The GRU hidden unit dimension was also set as 50; so in the

case of bidirectional GRU, 100 dimensions for each latent activity

representation were generated. For training, we used a mini-batch

size of 64. We set the maximum sequence length to be 50, and

we padded those sequences that are shorter than 50 with 0’s. We

used stochastic gradient descent to train all the models with Adam

optimizer (in TensorFlow). The best choice of λ was 0.1, and the

best learning rate was 0.001 (learnt from grid search). We employed

dropout mechanism to regularize the training process with a drop

rate of 0.5.

In addition, while tuning the models for conversion prediction

AUC,we allowed for an overfit up to 2%, i.e., themaximum allowable

difference between test-AUC and train-AUC was 2% of the train-

AUC.

9.4 Online campaign setup
Our online ad campaigns for ADV1, ADV2, and ADV3 using funnel
specific targeting were setup as independent campaigns within

the Yahoo Gemini platform. The creatives for each funnel stage

were derived from the editorially tagged seed list for the advertiser

(this had to go through a rigorous approval process, limiting the

freedom in deciding creatives). After the seed lists were scored, and

a funnel stage assigned to each user (with respect to an advertiser),

the whole population of scored users was randomly split into test

and control buckets (of roughly equal size close to 10 million users).

The test population was subjected to funnel specific ads, while no

such ads were shown to the control population. Users from both

test and control could have been exposed to ads for the concerned

advertiser from other advertising platforms outside Yahoo Gemini

(such exposure is beyond our control). During our online exper-

iments, both test and control users for ADV2 were also exposed

to a regular campaign for ADV2 which enabled some comparisons

which we have reported in this paper.
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