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Abstract
The clinical named entity recognition (CNER) task seeks to
locate and classify clinical terminologies into predefined cat-
egories, such as diagnostic procedure, disease disorder, sever-
ity, medication, medication dosage, and sign symptom. CNER
facilitates the study of side-effect on medications including
identification of novel phenomena and human-focused in-
formation extraction. Existing approaches in extracting the
entities of interests focus on using static word embeddings to
represent each word. However, one word can have different
interpretations that depend on the context of the sentences.
Evidently, static word embeddings are insufficient to inte-
grate the diverse interpretation of a word. To overcome this
challenge, the technique of contextualized word embedding
has been introduced to better capture the semantic meaning
of each word based on its context. Two of these language
models, ELMo and Flair, have been widely used in the field of
Natural Language Processing to generate the contextualized
word embeddings on domain-generic documents. However,
these embeddings are usually too general to capture the prox-
imity among vocabularies of specific domains. To facilitate
various downstream applications using clinical case reports
(CCRs), we pre-train two deep contextualized language mod-
els, Clinical Embeddings from Language Model (C-ELMo)
and Clinical Contextual String Embeddings (C-Flair) using
the clinical-related corpus from the PubMed Central. Ex-
plicit experiments show that our models gain dramatic im-
provements compared to both static word embeddings and
domain-generic language models. The pre-trained embed-
dings of these two models will be available soon.

Keywords natural language processing, clinical named en-
tity recognition, clinical case report, contextualized token
embedding, deep language model

1 Introduction
Clinical case reports (CCRs) are written descriptions of the
unique aspects of a particular clinical case (Cabán-Martinez
and García-Beltrán, 2012). They are intended to serve as
educational aids to science and medicine, as they play an
essential role in sharing clinical experiences about atypical
disease phenotypes and new therapies (Caufield et al., 2018).
Unlike other types of clinical documents (e.g., electronic

medical records, or EMRs), CCRs generally describe single
clinical narratives at a time: these are stories of diseases as
they were observed and treated, written in language requir-
ing domain familiarity but otherwise generally interpretable.
Conveniently, accessing and reading any of the more than
2 million CCRs in publication does not involve the privacy
responsibilities required by EMRs and other protected health
information. CCRs therefore serve as rich, plentiful examples
of clinical language.
Clinical named entity recognition (CNER) is an impor-

tant text mining task in the domain of biomedical natural
language processing. It aims to identify clinical entities and
events from the case reports. For example, in the sentence
“CT of the maxillofacial area showed no facial bone fracture.”
“CT of the maxillofacial area” is a “diagnostic procedure” and
“facial bone fracture” belongs to the “disease and disorder”
category. As with documents describing experimental pro-
cedures and results—often the focus of general biomedical
annotated corpora such as PubTator (Wei et al., 2013)—CCRs
include a large variety of entity types and potential orders
of events (Caufield et al., 2018). Methods to better enable
biomedical and clinical NLP at scale, across numerous en-
tity types, and with generalizable approaches across topics
are necessary, as single-task or single-entity type methods
provide insufficient detail for comprehensive CNER. Fine-
grained CNER supports development of precision medicine’s
hope to leverage advanced computer technologies to deeply
digitize, curate and understand medical records and case
reports (Bates et al., 2014, Rajkomar et al., 2018).
Biomedical NER (BioNER), of which CNER is a subtask,

has been a focus of intense, groundbreaking research for
decades but has recently undergone a methodological shift.
Its foundational methods are largely rule-based (e.g., Text
Detective (Tamames, 2005)), dictionary-based (e.g., BioThe-
saurus (Liu et al., 2006) or MetaMap (Aronson, 2001)), and
basic statistical approaches (e.g., the C-value / NC-value
method (Frantzi et al., 2000)). Source entities for NER are
sourced from extensive knowledgebases such as UMLS (Bo-
denreider, 2004) and UniProtKB (The UniProt Consortium,
2017). Readily applicable model-based BioNER methods, in-
cluding those built upon non-contextualized word embed-
dings such as Word2Vec and GloVe (Mikolov et al., 2013,
Pennington et al., 2014) now promise to more fully address



the challenges particular to the biomedical domain: concepts
may have numerous names, abbreviated forms, modifiers,
and variants. Furthermore, biomedical and clinical text as-
sumes readers have extensive domain knowledge. Its doc-
uments follow no single structure across sources or topics,
rendering their content difficult to predict.

These models neither avoid time-consuming feature engi-
neering, nor make full use of semantic and syntactic infor-
mation from each token’s context. Context can thoroughly
change an individual word’s meaning, e.g., an “infarction”
in the heart is a heart attack but the same event in the brain
constitutes a stroke. Context is crucial for understanding
abbreviations as well: “MR” may represent the medical imag-
ing technique magnetic resonance, the heart condition mitral
regurgitation, the concept of a medical record, or simply the
honorific Mister. Non-contextualized word embeddings ex-
acerbate the challenge of understanding distinct biomedical
meanings as they contain only one representation per word.
The most frequent semantic meaning within the training
corpus becomes the standard representation.
Inspired by the recent development of contextualized to-

ken representations (Akbik et al., 2018, Devlin et al., 2018,
Peters et al., 2018) supporting identification of how the mean-
ing of words changes based on surrounding context, we
refresh the technology of CNER to better extract clinical
entities from unstructured clinical text. The deep contex-
tualized token representations are pre-trained with a large
corpus using a language model (LM) objective. ELMo (Peters
et al., 2018) takes word tokens as input and pre-trains them
with a bidirectional language model (biLM). Flair (Akbik
et al., 2018) proposes a pre-trained character-level language
model by passing sentences as sequences of characters into
a bidirectional LSTM to generate word-level embeddings.
BERT (Devlin et al., 2018) is built with bidirectional multi-
layered Transformer encoders on top of the WordPiece em-
beddings, position embeddings, and segment embeddings.
In this paper, we address the CNER task with contextual-
ized embeddings (i.e., starting with ELMo and Flair), then
and compare structural differences in the resulting models.
Following recent work demonstrating impressive perfor-
mance and accuracy of pre-training word representations
with domain-specific documents (Sheikhshabbafghi et al.,
2018), we collected domain-specific documents all related to
CCRs, roughly a thousandth of PMC documents, and pre-
trained two deep language models, C-ELMo and C-Flair. In
this paper, we focus on the CNER task and evaluate the two
language models across three datasets. Our two pre-trained
language models can support applications beyond CNER,
such as clinical relation extraction or question answering.

Our contributions are as follows:

• To the best of our knowledge, we are the first to build
a framework for solving clinical natural language pro-
cessing tasks using deep contextualized token repre-
sentations.

• We pre-train two contextualized language models, C-
ELMo and C-Flair for public use. We evaluate our
models on three CNER benchmark datasets, MAC-
CROBAT2018, i2b2-2010, NCBI-disease, and achieve
dramatic improvements of 10.31%, 7.50%, and 6.94%,
respectively.

• We show that pre-training a language model with a
light domain-specific corpus can result in better per-
formance in the downstream CNER application, com-
pared with domain-generic embeddings.

In Section 3.1, we introduce the ELMo and Flair language
models. In Section 3.2 we propose the CNER model.Section 4
describes our pre-training corpus and the datasets for eval-
uating our CNER tasks. We show experimental results and
detail a brief case analysis.

2 Related work
2.1 Clinical named entity recognition
Clinical named entity recognition (CNER) is a fundamen-
tal technique to acquire knowledge from descriptions of
clinical events and disease presentations from a wide vari-
ety of document types, published case reports and sets of
electronic medical records. CNER has drawn broad atten-
tion, but heavy feature engineering is intentional for tradi-
tional CNER methods (Aronson, 2001, De Bruijn et al., 2011,
Demner-Fushman et al., 2017, Savova et al., 2010). In recent
years, deep learning methods have achieved significant suc-
cess in CNER tasks. Zhang et al. (2018) leveraged transfer
learning to use existing knowledege. Wang et al. (2018) ap-
plied another semi-supervised learning method, multi-task
learning, to obtain useful information from other datasets.
Xu et al. (2018) improved the performance of CNER by using
a global attention mechanism. A residue dilated convolution
network helped fast and accurate recognition on Chinese
clinical corpus (Qiu et al., 2018). However, these deep learn-
ing methods all depend on the token representations that are
not contextualized. The failure to track different semantic
and syntactic meanings of each token leads to sub-optimal
learning and modeling on named entity recognition. In this
work, inspired by the recent development of contextualized
token representations, we explore the ensemble of contextu-
alized language models and simple deep learning methods
for CNER.

2.2 Contextualized token representations
Deep contextualized word representation models complex
characteristics of word use and how these uses vary across
linguistic contexts (Akbik et al., 2018, Devlin et al., 2018, Pe-
ters et al., 2018). As a result, the representation of each token
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is a function of the entire input sentence, which is differ-
ent from the traditional word type embeddings. Peters et al.
(2018) leveraged a two-layer bidirectional language model
(biLMs) with character convolutions to construct this func-
tion. Devlin et al. (2018) followed the idea of self-attention
mechanism (Vaswani et al., 2017) and pre-trained a deep
bidirectional Transformer by jointly conditioning on both
left and right context. Akbik et al. (2018) developed contex-
tual string embeddings by leveraging the internal states of
a trained character language model. So far, these deep lan-
guage models has brought massive improvement in different
NLP applications including question answering, relation ex-
traction, and sentiment classification.

Some researchers have applied contextualized embeddings
to the biomedical domain. Lee et al. (2019) pre-trained a
BioBERT with the settings of base BERT (Devlin et al., 2018)
using billions of tokens from PubMed abstracts and PMC full
text articles. Peng et al. (2019) pre-trained also a BERT using
the complete PubMed abstract and MIMIC III corpus, tested
with ten datasets of five tasks. These two works improved
the performance of several representative biomedical text
mining tasks; however, it required a large number of com-
putational resources and inevitably a long time to train the
language model. Inspired by (Sheikhshabbafghi et al., 2018),
we pre-trained two light-loaded language models with a
much smaller domain-specific clinical dataset selected from
the PMC corpus.

3 Method
In this section, we firstly introduce the architectures of both
word-level and character-level languagemodels in Section 3.1.
Then we explain our CNER model in Section 3.2.

3.1 Contextualized Embeddings
3.1.1 ELMo
ELMo is a language model that produces contextualized em-
beddings for words. It is pre-trained with a two-layered bidi-
rectional language model (biLM) with character convolu-
tions on a large corpus. The left lower part in Figure 1 is
the high level architecture of ELMo, where R(·) means the
representation of a word.

ELMo takes a sequence of words (w1,w2, ...,wN ) as input
and generates context-independent token representations
using a character-level CNN. Then ELMo feeds the sequence
of tokens (t1, t2, ..., tN ) into the biLM which is a bidirectional
Recurrent Neural Network (RNN). The forward-LM com-
putes the probability of each sequence by:

p(t1, t2, ..., tN ) =
N∏
k=1

p(tk |t1, t2, ..., tk−1) (1)

Thus at each position k , the RNN layer outputs a hidden rep-
resentation hk for predicting the token tk+1. The backward-
LM has the same structure as the forward-LM, except the

input is the reverse sequence. Then, we jointly maximize the
log-likelihood of both directions:

N∑
k=1

( logp(tk |t1, t2, ..., tk−1;θx ,θf ,θs )

+ logp(tk |tk+1, tk+2, ..., tN ;θx ,θb ,θs ) )

(2)

where θx is the token representation and θs is the Softmax
layer for both the forward and backward LM’s, and θf and
θb denotes the parameters of RNNs in two directions.

3.1.2 Flair
Flair is a character-level word representation model that also
uses RNN as the language modeling structure. Different from
ELMo, Flair treats the text as a sequence of characters.
The goal of most language models is to estimate a good

distribution p(t0, t2, ..., tT ) where t0, t1, ..., tn is a sequence
of words. Instead of computing the distribution of words,
Flair aims to estimate the probability p(x0,x1, ...xT ), where
x0,x1, ...,xT is a sequence of characters. The joint distribu-
tion over the entire sentence can then be represented as
follows:

p(x0,x1, ...,xT ) =
T∏
t=0

p(xt |x1,x2, ...,xt−1) (3)

where p(xt |x0, ...,xt−1) is approximated by the network out-
put ht from one RNN layer.

p(xt |x0, ...,xt−1) =
T∏
t=0

p(xt |ht ;θ ) (4)

ht is the hidden state that records the entire history of the
sequence, which is computed recursively with a memory
cell. θ denotes all the parameters of the RNN model. On top
of the hidden layer, there is a fully-connected softmax layer,
so the likelihood of a character is defined as:

p(xt |ht ;W ) = softmax(W · ht + b) (5)

whereW and b are the weights and biases.
Besides, Flair also has a backward RNN layer. Flair extracts

the token embeddings from the hidden states of both the
forward and backward models. Given a word that starts
at index ts and ends at te in a sequence of characters, the
embeddings of this word are defined as a concatenation of
the hidden states from both forward and backward models:

r F lair := hfte+1 ⊕ hbts−1 (6)

where hf denotes the hidden states from the forward model
and hb are the hidden states from the backward model. The
details are illustrated in the left upper part in Figure 1.

3.2 CNER Model
We used a well-established BiLSTM-CRF sequence tagging
model (Habibi et al., 2017, Huang et al., 2015, Wang et al.,
2018) to address the downstream sequence labeling tasks.
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Figure 1. Character and Word Language models

First, it passes sentences to a user-defined token embed-
ding model, which converts a sequence of tokens into word
embeddings: r0, r1, r2, ..., rn . We may concatenate embedding
vectors from different sources to form a newword vector. For
example, the concatenated embeddings of GloVe and Flair is
represented as:

ri = r
GloV e
i ⊕ r F lairi (7)

Then, the concatenated embeddings are passed to the BiLSTM-
CRF sequence labeling model to extract the entity types.

4 Experiments
In this section, we first introduce three benchmark datasets,
MACCROBAT2018, i2b2-2010 and NCBI-disease. Then, we
explain the corpus we used to pre-train the language models.
The performance comparison among a set of baseline models
and our methods is discussed in Section 4.4.

4.1 Datasets
4.1.1 MACCROBAT2018
Caufield et al. (2018) developed a standardized metadata tem-
plate and identified text corresponding to medical concepts
within 3,100 curated CCRs spanning 15 disease groups and
more than 750 reports of rare diseases. MACCROBAT2018 is
a subset of the case reports which were annotated by clinical
experts. In total, there are 200 annotated case reports and
3,652 sentences containing 24 different entity/event types.
We randomly selected 10% case reports as development set
and 10% as test set. The remaining documents are used to

train the CNER model. Detailed description is shown in Ta-
ble 1, 2, and 3.

4.1.2 i2b2-2010
The i2b2/VA 2010 Workshop (Uzuner et al., 2011) on NLP
challenges for clinical records presented three tasks: a con-
cept extraction task, an assertion classification task, and a
relation classification task. The i2b2-2010 dataset provides
“layered” linguistic annotation over a set of clinical notes.
In this study, we focus on the first task: given the plain
text, we extract the clinical entities. The dataset contains
three entity types which are “test”, “problem”, “treatment”.
We followed Uzuner et al. (2011) to split the dataset into
train/development/test sets.

4.1.3 NCBI-disease
The NCBI-disease (Doğan et al., 2014) dataset is fully anno-
tated at the mention and concept level to serve as a research
resource for the biomedical natural language processing com-
munity. The dataset contains 793 PubMed abstracts with
6,892 disease mentions which leads to 790 unique disease
concepts. Therefore, the dataset only has one types which is
“disease”.

4.2 Pre-training Corpus
To pre-train the two language models, we obtained articles
through the PubMed Central (PMC) FTP server1, and in total
picked 47,990 documents that are related to clinical case
1ftp://ftp.ncbi.nlm.nih.gov/pub/pmc
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reports. We indexed these documents with some keyword
including “case report” and “clinical report”. This corpus
contains 0.1 billion words which is around 1/10 of the corpus
used for the domain-generic ELMo (Peters et al., 2018) and
Flair (Akbik et al., 2018). We will release our pre-trained
language models soon.

4.3 Pre-trained Language Model
We proposed C-ELMo and C-Flair, which are respectively a
pre-trained ELMo and a pre-trained Flair with the domain-
specific corpus. To fairly compare the two models, we do not
initialize C-ELMo and C-Flair with any pre-trained ELMo
and Flair, and pre-train them on the same clinical case re-
port corpus described in Section 4.2. Moreover, we tried to
set both models’ parameter sizes to a similar scale. Since
Flair’s parameter size is 20M when it performs at its best
(hidden size of 2048), we chose the medium size ELMo model
correspondingly, which has 25M parameters according to
AllenNLP (Peters et al., 2018). All models were pre-trained on
one NVIDIA Tesla V100 (16GB), with each requiring roughly
one week to complete.
For C-Flair, we followed the default settings of Flair, a

hidden size of 2048, a sequence length of 250, and a mini-
batch size of 100. The initial learning rate is 20, and the
annealing factor is 4.

For C-ELMo, we chose the medium-size model among all
configurations, which has a hidden size of 2048 and projec-
tion dimension of 256. For the convolutional neural network
token embeddings, the maximum length of a word is 50 and
the embedding dimension is 16.

Table 1. Number of sentences in each CNER dataset

Dataset Name Train Dev Test
MACCROBAT2018 2,894 380 351
i2b2-2010 14,683 1,632 27,626
NCBI-disease 5,423 922 939

Table 2. Number of tokens in each CNER dataset

Dataset Name Train Dev Test
MACCROBAT2018 64,879 862 7,955
i2b2-2010 134,586 14,954 267,250
NCBI-disease 135,701 23,969 24,497

Table 3. Number of entity types in each CNER dataset

Dataset Name # of Entity Types
MACCROBAT2018 24
i2b2-2010 3
NCBI-disease 1

4.4 Results
To fairly compare the performance of each model, we pre-
trained C-Flair and C-ELMo on the same subset of PubMed
Central (PMC) documents. We then applied the BiLSTM-CRF
model (Huang et al., 2015) to evaluate the downstream se-
quence labeling tasks. The results of our experiments are
shown in Table 4. Note that “Embeddings” in Table 4 denotes
the stacking embeddings which can be the concatenation of
different word embedding vectors. We used the pre-trained
GloVe embeddings of 100 dimensions 2. The Flair embeddings
are pre-trained with a 1-billion word corpus (Chelba et al.,
2013). ELMo denotes the pre-trained medium-size ELMo on
the same 1-billion word corpus and ELMoPubMed denotes
the pre-trained ELMo model with the full PubMed and PMC
corpus 3. We used the micro F1-score as the evaluation met-
ric.

4.4.1 Domain-specific v.s. Domain-generic corpus
From Table 4, we can observe that the models pre-trained on
the selected case report corpus outperformed all the other
language models pre-trained on the domain-generic corpus.
The concatenated embedding of GloVe and C-ELMo performs
the best on MACCROBAT2018 and NCBI-disease datasets,
while GloVe plus C-Flair achieved the best performance on
i2b2-2010. We can conclude that pre-training the language
models with a small domain-specific corpus can be more ef-
ficient and effective for improving the performance of some
downstream tasks. The domain-specific knowledge can alter
the distribution and the proximity among words, thus con-
tributing a better understanding of the relationship between
word and entity types in our task.

4.4.2 Contextualized v.s. Non-contextualized
embeddings

We also used the static word embeddings, GloVe itself, to rep-
resent the tokens in the sequence labeling task. The results
in Table 4 show that the stacking contextualized embeddings
dramatically boosted the F1-score on three different datasets
by 10.31%, 7.50%, and 6.94%. It proves that the deep lan-
guage models absorb more intensive semantic and syntactic
knowledge from the contexts. We noticed that the F1-score
of Flair on MACCROBAT2018 dataset was surprisingly low.
It showed that the performance of a purely character-level
language model may be not as robust as the word-level mod-
els.

4.4.3 Compared with other baseline models
Ma and Hovy (2016) proposed a bi-directional LSTM-CNNs-
CRFmodel tomake use of bothword- and character-level rep-
resentations.Wang et al. (2018) leveragedmulti-task learning
and attention mechanisms to improve the performance of

2https://nlp.stanford.edu/projects/glove/
3https://allennlp.org/elmo/
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Table 4. The comparison of F1-scores (%) on three datasets among different types of embeddings

Embeddings MACCROBAT2018 i2b2-2010 NCBI-disease
GloVe 59.63 81.35 82.18
ELMo 61.69 84.61 84.50
Flair 57.25 81.65 84.23
GloVe+ELMo 63.09 84.82 85.37
GloVe+Flair 62.63 81.21 85.58
GloVe+ELMoPubMed 64.56 86.50 87.04
GloVe+C-ELMo 65.75 87.29 87.88
GloVe+C-Flair 64.18 87.45 86.60

Table 5. The performance of three baseline methods and our best model on three datasets. Our models only leverage a simple
LSTM-CRF sequence labeling module with the pre-trained contextualized embeddings.

Models MACCROBAT2018 i2b2-2010 NCBI-disease
Our best model 65.75 87.45 87.88
Ma and Hovy (2016) 60.13 81.41 82.62
Wang et al. (2018) 63.10 84.97 86.14
Lee et al. (2019) 64.38 86.46 89.36

biomedical sequence labeling task. Compared with these two
state-of-the-art models, as shown in Table 5, our methods
perform consistently better. We suppose that with the help of
pre-trained contextualized embeddings, even a light-loaded
downstream model can achieve extraordinary performances.

The BioBERT proposed in (Lee et al., 2019) was pre-trained
using a language model with around 110M parameters and
using a large number of computational resources (8 NVIDIA
V100 32GB GPUs). However, this contextualized language
model only gets better performance in the simplest dataset
(NCBI-disease) with only one entity type. On MACCRO-
BAT2018 and i2b2-2010, we improved the performance by
2.13% and 1.15%. This shows that good experimental results
can be achieved by making rational use of limited resources.

4.5 Case Study and Analysis
We analyze the C-Flair and C-ELMo on specific categories for
the MACCROBAT2018 dataset. We look into the F1-scores
of 10 different entity types. All these types appear more than
50 times in the dataset.

From Table 6, we can see that the character-level language
model C-Flair shows an advantage in the type “Dosage”.
We find that this entity type has a number of entities that
do not appear in the word-level vocabulary, such as “60
mg/m2”, “0.5 mg”, and “3g/d”. On the other hand, C-ELMo
has a better performance in the type “Severity”, which con-
tains words like “extensive”, “complete”, “significant”, and
“evident”. C-ELMo also extensively outperforms C-Flair in
“Detailed Description”. The representations of tokens rely
more on the word-level context in these types. Therefore,
C-ELMo shows better power of capturing the relationship

Table 6. The comparison of F1-scores (%) between C-ELMo
and C-Flair on different entity types of MACCROBAT2018

Entity GloVe+C-ELMo GloVe+C-Flair
Biological Structure 63.94 64.88
Detailed Description 45.81 40.00
Diagnostic Procedure 74.93 74.71
Disease Disorder 50.84 50.83
Dosage 77.42 80.00
Lab Value 74.48 72.31
Medication 76.34 72.13
Non-biological Location 80.77 76.00
Severity 72.41 61.81
Sign Symptom 62.27 60.64

between the word-level contextual features with the entity
types.

We noticed in Table 6, “Disease Disorder” achieved around
50% F1-score with both models. Though they performed well
on NCBI-disease dataset, it is hard for them to correctly rec-
ognize complex phrase-level disease entities on MACCRO-
BAT2018, such as “Scheuer stage 3”, and “feeding difficulties”.

5 Conclusion
In our study, we showed that contextual embeddings show
a sizable advantage against non-contextual embeddings for
clinical NER. In addition, pre-training a language model with
a domain-specific corpus results in better performance in
the downstream CNER task, compared to the off-the-shelf
corpus. We also developed a comparatively fair comparison
between C-ELMo and C-Flair. We found that the two lan-
guage models demonstrate variability in labeling different
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entity types in our datasets, presumably due to their sepa-
rate focuses on word-level and character-level contextual
features.
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